The laws describing the motion of the domain boundary, given by the relations (6) and (7), encompass
a sufficiently broad collection of engineering heat- and mass-transfer problems.

It should be remarked that we can also apply the method in question to the system (1), wherein the latter
is augmented by heat and matter sources; we can also apply it to a system containing, not two, but n transfer
potentials,

NOTATION
T is the temperature;
0 is the moisture content;
Fo is the Fourier number;

Ko, Ly, Pn are the Kossovich, Lykov, and Posnov numbers, respectively;
Ko* = ¢eKo, where ¢is the factor of phase transition of a liquid into a vapor;
I"=0, 1, 2 for a plate, cylinder, and sphere, respectively.
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NUMERICAL ALGORITHM OF THE SOLUTION OF THE
MULTIPHASE STEFAN PROBLEM

E. G. Palagin UDC 536.24.02

A method is proposed for computing the temperature and position of the phase interface based
on the passage to new variables and a new function. The transformation is invariant relative to
the heat-conduction equation, and the boundaries in the new variables are fixed.

A whole series of papers on the Stefan problem exist, which are surveyed sufficiently completely in [1],
and wherein a great deal of original material associated with the proof of the uniqueness and existence of the
solution is also generalized. Numerical schemes for the solution are proposed in [2]. Significant attention is
paid there to the mathematical aspect of the question, but no results are presented of practical tests or of com-
putations. V. G. Melamed [3] also gave a numerical solution, realized in application to the case of freezing
soils. Fundamental results of a cycle of the author's work are presented in [3]. An analogous problem in
terms of physical content, but taking account of snow and the influence of the atmosphere, is considered in [4].
Let us note that the nature of the method of solution to be used is determined by the specifics of some definite
problem to be solved, which is a particular case of the general Stefan problem. The present paper, which is
oriented toward the hydrometeorology area from the viewpoint of practical applications, is organized in a
similar plan,

We formulate the problem below. Let us examine the one-dimensional case. Between two fixed planes
z=0and z = H at a time t = 0 let there be n alternating layers of material in the liguid or solid aggregate state
with the moving interfaces z =hpy) m =1, 2, ..., n—1), where phase transition occurs. Let one layer of
another material whose outer boundary moves according to the known law z =—I(t) also adjoin the surface z=0. The
initial temperature distribution is given in the whole domain T%z). Let us consider the temperature a known
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function of the time on the bounding planes z = —I(t) and z = H. For z = 0 it is natural to assume the condition
to be satisfied to be the equality of the temperatures and the heat fluxes. Heat balance holds on the moving
boundaries with the phase transition, and the temperature equals the phase-transition temperature T,. Finally
we will assume it equal to zero., In the general case this is always attained by the intreduction of the differ-
ence between the sought temperature and Ty. The temperature field and the position of the phase interface
are to be determined. We consider the coefficients A and a fo be time-dependent and discontinuous functions
of z, where they remain constant within the limits of each layer. Written mathematically, this reduces to the
following:

oT 0 aT
— = — {5 A — 1
eP ot 0z (L(Z’ 2 62)’ (1)
Tlpm—iiry = Dy (), ({(0)=£=0), 2)
Tee—o = le=‘¥‘0 4 (3)
oT ) oT |
A ,'t - = 2 t ’ H 4
& 0z =0 0 0z fp=t0 @
T!zzhm(i)—-o == T}'2=hm(t)-j-0 =0, (hm (D) - 0)’ (5)
_aT aT | ] dh,, (6)
—1yntl z, 1) — — Az, ©) — = A2,
(—1) [x<<,t) I b= A e
T.[zzH = €D2 (t)r (7)
" Tli=mo =T°(2). (8)

If the first layer is crystalline, then the even values of the exponent with —1 correspond to zones where

the substance is in the solid aggregate state and the odd values, to zones where the substance is in the liguid
state.

Now let us partition the whole time of interest to us into a number of steps At = ¢~ - G=1,2,...).
Initially, we digress from the problem formulated above and examine some m-th layer in the j-th step, for

which we consider the temperature of the moving boundaries to be known functions of time in the interest of
generality.

Let us introduce the variables £ = £(z, t), T = 7(t) in place of z and t; let us also introduce the function
w@ V=1C ITE D ()
in plvace of T(z, t) (the superscript j will temporarily be omitted everywhere).

Henceforth, let us pose the problem of defining them in such a way that the boundaries would be fixed in

the new variables and the equation for u(;, 7) would have the form of the thermal~conductivity equation, i.e., we
should have '

du b u
PP oz (10)
Taking account of (9), this can be rewritten as
f . 0F (0 = o 8 of . @T\
Loror S o (S T G ) an

In turn, in the new variables in place of (1) we will have

o _ . ( 9t \* dt  &T dt T [ ot o
gt 9z dv | o2 dv o ( ’

(12)

Substituting (12) into (11), we obtain
of o N\ = ' of df 0% 8% ) aT
—— —b T— 120 + > —q —
( at g ) [ az (s ( ot 022 ot T

or \* _dt T
el e T as)
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1t follows from (13) that the following relationships should be valid for compliance with the conditions
posed above:

o _y 9, (14)
ot og?
omf 1 & (o 3%
"~ b dn (~at ¢ 022)’ (15)
(6§)zdi=b.' ‘ 16
oz dy a

A deduction may be made from the form of (16) that { can be only a linear function of z; thus, we should
write
{=a()z+4pip).
Requiring £ =m—1 if z = hy,y(t) and {=m if z = hy, (t), we find
z—h, (4
T A hm ) + { < m)

(At () = b () — by B))-
Taking account of (17), from (16) we obtain

a di a d(Ah,) dt
dv=——+ 555~ or: dr= . m .
=T Bl T YT T ARL  d(Ahy
This latter expression can be integrated if it is assumed that
d(Ah,) AR —ART (18)
dt - At
In this case we obtain
_ aAt Al (1) — Akl
T (AR, —ARL ) [ A, (6 A ] ' (19)
Since from (18) it results that
Ah,, (8 = ARL™ - (Al — ARGTY) (1 — )/AS, (19"
by using this latter expression we obtain a formula for 7 of the form
_a—t"Yy .1
N . A () AR 20)

Now let us define the constant b in (20) in such a way that for { = tiwewouldhave T = 1. To do this, the equality
oAt

b= AR @1)

should be satisfied. Then, finally,
o =g Ahi, R
T = _-A—t—m—(?)— , o<t (22}

To determine the form of the function f(¢, 7), let us use (15) together with (17), (21), and (22). After integrat-
ing (15), we arrive at the dependence

PG 9 =C () exp {?—g—) 1c—m+6>2—(m~6>21} ,
where

_ ARL—ARE o Bh—hR (23)
26 [AhL, — (Ahl, — ARLT') 1] ARl — AR

P{m)
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Fig. 1. Thawing soil: 1) soil
surface temperature T (°C); 2)
thawing-layer thickness Ah,
(cm); 3) freezing-layer thick-
ness Ah, (cm); t, days.

and C(7) is an unknown function which we find by using (14) by substituting the last expression therein. Then

C P(7) (m—8)?
C (1) = = . :
M= Al — (Al — AR ') [ 2 ]
Hence, we obtain -
- c (Ahy— AR (L —m - 8
T =y e s e O { 4b [Ab), — (A — M) 7] } . o

The factor Cy can be set equal to some constant value with the dimensionality of a length, which we select
equal to Ah}r'li. We obtain the function u(g, 7) by substituting (24) into (9).

Different particular cases can be gbtained from (17), (22}, (23), and (24). Thus, we should put therein
the following: for m = 0, Ahy(t) =1 (t), l% = l%"1= 0, and 6 = 0; for m = 1, Ahy(t) =h{t) and 6 = 1; for m = n,
AOhp(t) = H—hy, 4(t) and 6 = 0, The first and third of the cases considered correspond to plates for which the
upper boundary moves and the lower is fixed and has the coordinates z = { = 0 or z = H, { = n; the second case
corresponds to the presence of an upper fixed boundary, while the Jower moves. Proceeding analogously, other
particular cases can be obtained also, but for our purposes those presenied shove are sufficient because their
combination will yield the problem posed. :

- Now let the quantity 7 be the computational spacing. The velocity is kept constant within each time step,
but changes during passage to the next step, i.e., in this case the curvilinear law of phase-interface motion is
approximated by broken lines. Let us satisfy the boundary conditions for 7 = 1. Then introducing the notation

WG, N=UIE), wi(g 0)=wu(p),
Ao D=M©), 4G v=d @),

we will have

Ui

Ui —ui™ = bl () et 25)
UJ'[ . v lj—i i
t=—1 == €Xp [W—] Dy (I), (26)
Ulle g = Ullgra, 27
M U _ M@ U (28)
4 9% J=o 3 0F lemso
Uil§=m—0 =Ujk=m+0 301 (29)
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(ST [_ (M — AR & ] U’ | ¥ ()

AW}, 40’ () ARl O fem—o  Ahhss
P Api—! 2 i j+1

wexp [_ (Al iy .Ahmﬂll(ﬁ-{-l) ] U PR 30)
4b' (L) Ay 07 temto At

Ullmn = @5 (). : (31)

The conversion is carried out for j > 1, Thus, if UJ-! is the solution for the j—1-th stem for 7 = 1, then
we will have in the j-th step for 7= 0

1 ART (=m0 [ AW, — AR AR — ARG i1
v ‘/'Ahin e e Sl hioyv e ey vl K 32)

The expression (32) plays the part of initial conditions in the j-th step. No conversion is carried out in the
first step, but the quantity u°(§) can be obtained from (9) and (24) for 7 = 0, so that

arer s 1 _ L] . 9 -
wE =]/ S ex [ e i:;”()cgihl'"“) ]Tw:). (32)

m

Therefore, it can be stated that the problem with moving boundaries is in no way different from ordinary
problems on heat propagation in composite plates with fixed planes of separation in its formal description [with-
out (30)] because of the transformations mentioned. Hence, any of the classical numerical schemes is appli-
cable for its solution. The single singularity is that a conversion of the initial conditions in conformity with
(32) must be performed in each step. But this produces no difficulties and does not complicate the problem in
practice. Condition (30) is used to seek hi *1 after which the quantity ul (¢) is found as a result of solving (25)
in combination with the conditions (26)-(29), (31)-(32). If the first and second members in the left side of (30)
are denoted, respectively, by k{ and k;, then we obtain at once

il i, (Rl —RI)AE
Rt = Al —— (33)
The quantity hi ! found from (33) is used to calculate Ul *!(¢), after which the process is repeated so that we
obtain b’ * , etc. For j =1, we must resort to iteration to determine h!. Initially setting h} = h?, we find
U}(;‘) and then h% from (33). Then we again repeat the whole procedure using h%, so that we finally obtain h%.
The process is continued until the inequality |hi_;—hll < & becomes valid for two values found successively,
where & is a previously assigned small number. The quantity hrl1 is taken as the true hl,

Let us note that we could operate analogously in the next steps, which would correspond to an implicit
scheme for computing h!, but as numerical experiments have shown, the implicit scheme elucidated above
yields completely satisfactory accuracy, while it is simultaneously less tedious. Hence, it was taken as
basic. »

A number of numerical tests were carried out to verify the method proposed. Consider the freezing
and thawing of snow-covered soil. The results of a computation and of observations in nature are in good
agreement. Data obtained in computing the thawing, for which materials of an expedition of the Voeikov Main
Geophysical Observatory to the Tsimlyansk reservoir (in the region of the collective farm "Gigant") were
used, are presented in Fig. 1. For a positive air temperature, the temperature on the snow surface was zero
and a three-layered medium was considered: snow (m = 0), frozen soil (m = 1), and thawed soil (m = 2). At
the H = 2m level, @,(t) = 8°C, which corresponds to the mean multiannual soil temperature. After the snow
vanishes, a thawing layer occurs in the soil from the top so that there are two thawing layers (from above and
from below) and a freezing layer in between. As an analysis shows, the total time for disappearance of the
frozen layer, starting from the time the snow falls, is ~4.5 days, which corresponds to actual measurements.
Curves 2 and 3 in Fig. 1 illustrate the behavior of the moving frozen-layer boundaries.

The quantity A = L'y[;)'vo(g) §=1—wo] was used in the computation. Values of the thermophysical coefficients
were taken from handbooks.

All the above refers to a problem with boundary conditions of the first kind on the outer surfaces, but the
algorithm developed can, in principle, be used even in the presence of boundary conditions of the second and
third kinds.
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In conclusion, let us note that the method proposed can be modified. Thus, if the outer given tempera-
ture varies sufficiently smoothly during a long time, then there is every foundation to consider that the rela-
tionship (19) remains valid in this interval. The problem can then be solved by partitioning 7 into a number of
finer sections which will be the computation steps, and the value of the temperature, obtained in the previous in-

terval, just for the value 7 = 1, will be used when going over to the next value of h{n. In the case mentioned,
such an approach is more efficient.

NOTATION
t is the time;
Z is the coordinate;
T(z, t) is the temperature;
Az, t), a(z, t) are the coefficients of thermal conductivity and thermal diffusivity, respectively;
hy, (0 are the coordinates of the phase-interface position;
H is the lower boundary coordinate;
L is the heat of the phase transition;
¥ is the volume weight of the soil;
w'(z) is the given moisture distribution in the soil;
Wy is the experimentally determined quality of moisture which does not freeze at 0°C.
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SEMI-ANALYTICAL ALGORITHM FOR THE APPROXIMATE
SOLUTION OF A NONSTATIONARY INVERSE PROBLEM OF
DIFFUSION ON THE BASIS OF A DIRECT METHOD OF
SOLUTION, LINEAR PROGRAMMING, AND
REGULARIZATION METHODS

P. I. Balk and T. V. Balk UDC 536.24.02

Some analytical solutions of the direct problem of diffusion are presented for infinite bodies.
The direct solutions constructed are used in algorithms for the approximate solution of the non-~
stationary inverse diffusion problem.

Results directly concerning the process of diffusion scattering of a substance are elucidated below., How-
ever, because of the analogy between the thermal conduction and diffusionprocesses, the results obtainedare
automatically carried over to the contiguous thermal-conductivity problem.

Let 0tn¢ and 0xyz be the combined Cartesian reference systeins with the ¢ and z axes directed downward.

Let us consider the free diffusion process in a half-space (in the absence of sources and sinks):
V=AE& n 0):E <oco, nj<<oo, {0} @
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